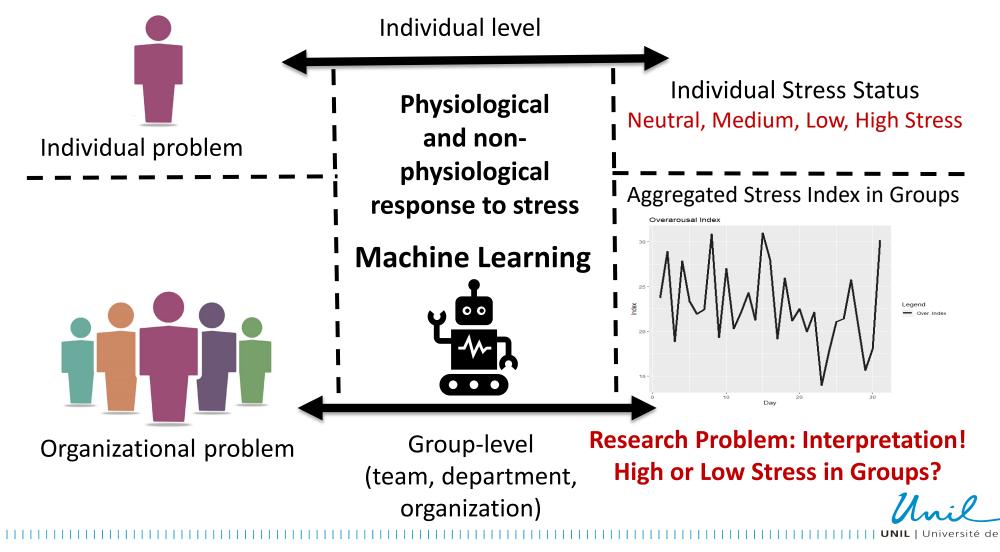
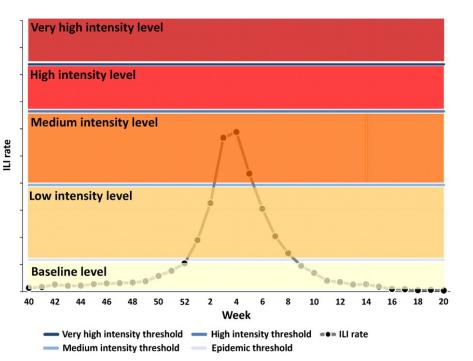
EXPLORATION OF SCENARIO-BASED SIMULATIONS FOR STRESS BENCHMARKING IN SWISS PUBLIC SERVICE


Vadym Mozgovoy – University of Lausanne Swiss Graduate School of Public Administration (IDHEAP)



- Background and Research Question
- Experimental Setting
- Problem Representation
- Methods
- Results
- Findings and Implications

BACKGROUND: STRESS PATTERN RECOGNITION

BACKGROUND: THRESHOLDS

Moving Epidemic Method (MEM), used by the European Centre for Disease Prevention and Control.

Medium, high, and very high intensity thresholds were estimated as the upper limits of the 40%, 90%, and 97.5% one-sided confidence intervals of the geometric mean.

«LARGE data»: 8-18 seasons

<u>Research Question</u>: How to construct Thresholds for Stress-Related Index with **«SMALL** data» (no multiple seasons)?

Numerical Simulation approach

Iniversité de Lausanne

EXPERIMENTAL SETTING (1 OF 2)

Participants:

> 18 public servants

Workplace:

Swiss Municipal Fiscal Administration

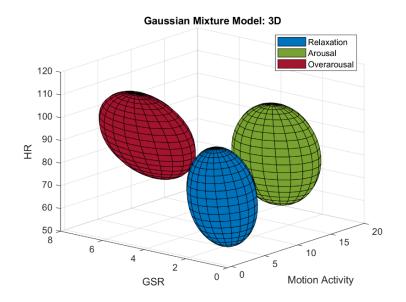
Timeline of experiment:

> 1st of November 2018 to 18th of December 2018

Variable work Intensity:

Bigger work-related stress in December than in November

EXPERIMENTAL SETTING (2 OF 2)


Activity:

> Wearable device use including personal bio-feedback on smartphone

Registration of response to stress including physiological and nonphysiological signals

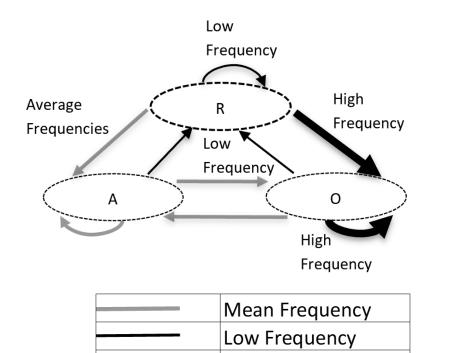
PROBLEM REPRESENTATION: MARKOV PROCESS

1. Input

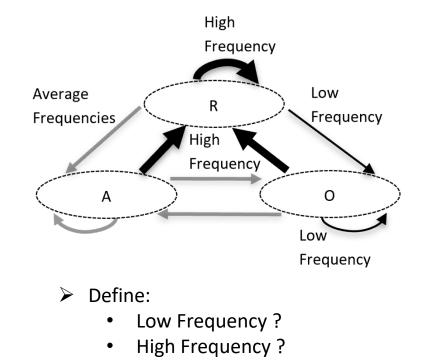
- HR: Heart Rate
- GSR: Galvanic Skin Response (Measure of Emotional Arousal)
- Motion Activity

2. Representation

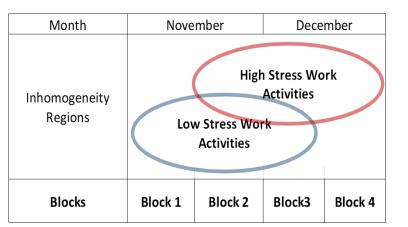
	Sample 1										
Time t	t1	t2	t3	t4	t5	t6	t7	t8	t9	t10	
Series	R	• R •	► R -	A	R	0	R	Α	R	R	
Transitions $t \rightarrow (t+1)$		$\overrightarrow{R \to R}$	$\overrightarrow{R \to R}$	$R \to A$	$A \rightarrow R$	$\langle R \rightarrow 0 \rangle$	$0 \rightarrow R$	$\boxed{R \to A}$	$A \rightarrow R$	$\overrightarrow{R \to R}$	


11 ...: 6

- Formulate assumptions for High and Low Stress scenarios;
- Support assumptions with data (Block resampling and distributions of parameters);
- Simulate benchmark curves (Markov Chain Models).


METHODS: FORMULATING ASSUMPTIONS PER SCENARIO

High Stress Scenario: <u>Downweigh</u> links to class «R» <u>Upweight</u> links to class «O»

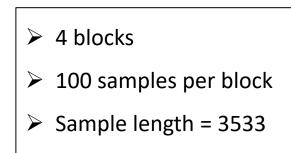

High Frequency

Low Stress Scenario: <u>Upweight</u> links to class «R» <u>Downweigh</u> links to class «O»

Unil

METHODS: SUPPORTING ASSUMPTIONS WITH DATA (1 OF 2)

Path c_RR


70000

Frequency 20000 50000

Absolute | 30000

20000

Block Resampling:

Distribution of parameters Defining High Frequency: Quantile 0.75

Defining Low Frequency:

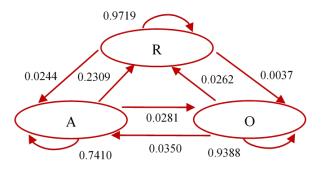
Quantile 0.25

- Distribution of parameter: $R \rightarrow R$
 - (R) is a major class (89% of

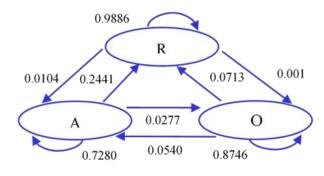
weight vs all states)

(RR) has a big influence on

simulation models (high scale vs


other transitions)

METHODS: SUPPORTING ASSUMPTIONS WITH DATA (2 OF 2)


	Absolute Frequencies						
Path	High Stress Scenario	Low Stress Scenario					
$R \rightarrow R$	q0.25 (Low Freq.)	q0.75 (High Freq.)					
$R \rightarrow A$	mean	mean					
$R \rightarrow O$	q0.75 (High Freq.)	q0.25 (Low Freq.)					
$A \rightarrow R$	q0.25 (Low Freq.)	q0.75 (High Freq.)					
$A \rightarrow A$	mean	mean					
$A \rightarrow O$	mean	mean					
$0 \rightarrow R$	q0.25 (Low Freq.)	q0.75 (High Freq.)					
$0 \rightarrow A$	mean	mean					
$0 \rightarrow 0$	q0.75 (High Freq.)	q0.25 (Low Freq.)					

Normalized Frequencies and State Diagrams:

1. High Stress Scenario:

2. Low Stress Scenario

RESULTS: NUMERICAL SIMULATION

Simulated Indices 60 -40 -Legend Index High Stress Low Stress Over, Index 20-10 20 30 0 Day

- 20 pseudo-users, 8 hours of daily use during 31 days
- 480 daily state transitions
- Sum of "Overarousal" episodes divided by amount of users

11 ...:

FINDINGS (1 OF 2)

Research Contributions to Methodological Knowledge:

- Confirmed possibility of Stress Pattern Recognition at group level (team, department, organization).
- New application of Markov Chain Modeling for simulation of stress-related benchmarks.
- New methodology of constructing stress-related benchmarks with limited historical data in several steps.

FINDINGS (2 OF 2)

Confirmed process of benchmark construction:

- 1. Train machine-learning algorithm (GMM or other);
- 2. Represent problem as a Markov Process;
- **3**. Formulate assumptions for High and Low Stress;
- Support assumptions with data (Study distributions of state transition frequencies; Estimate parameters from the distributions);
- 5. Simulate benchmark curves (Markov Chain Models);
- 6. Overlay stress-related Index (Data aggregation and Weights).

PRACTICAL IMPLICATIONS

Benchmark curves for stress-related Index may serve to:

- Interpret and analyze group-level stress-related indices;
- > Compare stress levels across different organizational units;
- > Support stress prevention:
 - Support blinded and anonymous group-level stress monitoring;
 - Support the development of new Human Resource Management practices, occupational health and safety policies.
- > Identify when stress becomes an organizational problem:
 - Support decision-making on stress management;
 - > Monitor the efficacy of stress management practices and interventions;
 - > Measure the performance of stress management trainings.

Thank you for your attention!

11 ... : 0